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An analysis of ‘dead space’ in semiconductors 
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School of Electronic and Electrical Engineering. University of Birmingham. PO Box 363, 
Birmingham B15 ZTT, UK 

Received 24 May 1991 

Abstract. An analytic expression is derived for the field dependence of ‘dead space’ in 
semiconductors in terms of optical phonon energy and mean free path. The basis for the 
analysis is the energy distribution function of electrons derived by Keldysh. The result is 
applicable toa rangeofdevices,such asavalanchephotodetectorsand MOSFETS, wheredead 
space can occupy a significant fraction of the active region. 

1. Introduction 

‘Dead space’ occurs in semiconductors because an electron/hole must travel a finite 
distance in an electric field before it can acquire the threshold energy of a process such 
as impact ionization. It is important in devices such as  avalanche photodetectors where 
it can affect noise and multiplication rates. The concept of dead space is not, however, 
restricted to the process of impact ionization. For instance an electron or hole injected 
into the gate oxide of a MOSFET must travel a minimum distance or ‘dead space’ before 
acquiringsufficient energy to overcome the potential barrier to the oxide. The threshold 
energy for this process is much greater than that of impact ionization and the dead space 
is correspondingly larger. Evaluation of dead space within a device is not simple as the 
electron/hole will, in general, suffer many inelastic collisions with phonons before 
reaching the threshold energy. Furthermore, in small-geometry devices such as MOSFETS 
the electric field may vary significantly over the dead space. A knowledge of dead space 
andits field dependence is therefore important in the study of devices where the spatial 
dependence of the hot-carrier distribution is significant. 

In this paper we derive an analytic expression for the field dependence of dead space 
in terms of optical phonon energy and mean free path. The result is applicable to 
semiconductors where at high energies it is reasonable to assume that non-polar scat- 
tering dominates. Before proceeding with the analysis we must first establish an unam- 
biguous definition of dead space. Two difficulties arise in defining dead space. The first 
because the magnitude of the dead space is determined by the upper energy limit of the 
process under consideration which in the case of impact ionization is uncertain due to 
the characteristic ‘soft-threshold’ nature of the process. Since in this work we are seeking 
a general expression for dead space we remove the need to define an upper energy limit 
by normalizing to its ballistic value. That is we determine the dead space relative to the 
distance travelled by an electron in reaching the same energy without colliding with 
phonons. The theory can always be extended to include ‘soft-threshold effects’. The 
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second difficulty is to determine the number of collisions an electron will make in trav- 
ersing the dead space. This is the crux of the problem. Clearly an electron can travel 
through the electric field without making collisions by Baraff [l] has shown that this 
process is improbable and such electrons play no part in determining the energy dis- 
tribution. In solving the Boltzmann transport equation, Keldysh [2] has shown that 
transport to high energies is dominated by those electrons that fortuitously travel for a 
larger than average time between collisions. The problem of determining dead space 
therefore reduces to finding the average energy gained by these electrons between col- 
lisions. 

The basis for our analysis is the electron energy distribution function derived by 
Keldysh. He showed that the dominant exponential term in the distribution function 
can be characterized by a parameters which is uniquely determined by the field, optical 
phonon energy and mean free path. I n  this work we derive an analytic expression for 
the mean energy gained between collisions in terms of the parameters. Since the energy 
lost/gained between collisions is known it is straightforward to determine the dead 
space. 

P A  Childs and C C C Leung 

2. Theory 

Keldysh has shown that in the region of large energies E 9 hw the distribution function 
of the electrons interacting with the acoustic and optical phonons in a covalent crystal is 
of the form 

fa(c) = constant x E" exp(-(E/qEl)so(E. T ) )  (1) 

where  is theelectronenergy, the parameter so(& T )  isdetermined as the positive root 
of the transcendental equation 

(1 + A )  cosh(hw/ZkT) 1 1 - s ,  
+-In-=O A cosh(hw/2kT) + cosh(hw/kT - s " ( h ~ / 4 E l ) )  2 0  1 t SO 

and the exponent v is a slowly varying function of so. Here hw is the optical phonon 
energy and E is the electric field in the case of a semiconductor with a scalar effective 
mass. The dimensionless parameter A determines the relative contribution of acoustic 
and optical phonon scattering to the total mean free path. 

A = LpIac 

qE V,f(P) + S;f(P) = s: If} 

l/I = l& t l/lac = (1 t A)//"p. (3) 

(4) 

Equations (1) and (2) were obtained by solving the Boltzmann transport equation 

to obtain a distribution functionf(p) in the form 

wherep is the electron momentum, S; the probability of collision with a phonon and 
SJ is the number of electrons arriving per unit time in the state with momentump from 
all other states as a result of emission or absorption of phonons. 
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By integrating (5) over a surface of constant energy and expanding in powers of hw/ 
cp up to first order, Keldysh obtains 

cosh(p + fiw d/dc,) 
cosh p si = (1 + h ) 7 ( p )  

d In 8 ( e p )  sinh(p + hw d/ds,) + hw 
d% cosh p (7) 

where 

d3P B(e) = a(& - ep) - I (23CW3 
p = hw/2kT 

and the operators cosh@ + hw d/dcp) and sinh(p + hw d/dzp) are defined by the 
relations exp(%hw d/dQ fu(&,) =fO(cp c hw).  The mean free time 7 ( p )  is connected 
with the mean free times for acoustic and optical phonon scattering, z, and zOpr via 

7-" = 7 , ; ( P )  + 7 3 P )  = (1 + n ) 7 ; ; ( P ) .  (8) 
Since we areonlyinterestedin thedominant exponential term in thedistribution function 
we simplify the derivation at this point by neglecting all terms of order hw/& in (6) and 
(7). Hence 

(€4 (9) s- s% 7-1 
P 

In equation (5) the term 

represents the probability of an electron travelling for a time I without collision. 

is given by 
Hence for an electron with momentump the mean energy gained between collisions 

Substituting (9) and (10) into (11) and integrating by parts yields 

Following Keldysh we introduce the effective mean free path defined by 

1 = (2ep/m)'/2zp (13) 
where m is the density-of-states effective mass. Changing variables we have 
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u = cos{E, p }  

E ( l  -2) = E'(1 - U*) 

l/o = [l - (&/&')(I - u71112. 

U = cos(E. p + qEt}. (14) 
In the case of parabolic energy bands the quantities E = E,,. E' = E,,+,,&,, u and U are 
connccted by the relation 

(15) 

(16) 

such that 

Introducing the new variables into (12) and averaging over angles we obtain 
1 E l/z dEIf 

( E  - E ' )  = -1' du exp[ -[, (1 - - E" (1 - u 2 ) )  3) 
f ( E )  _, 

where r is the contour of integration. Since the distribution function depends weakly on 
the pre-exponential term, equation (17) can be easily solved by assuming a distribution 
of the form 

fo(E) = constant X exp - i I,' s% 
In this case the exponent in (17) can be expanded into powers of E - E' up to first order: 

Carrying out all integrations, equation (17) reduces to the form 

2 --In-)/in-. 1 l + S o  1 + so 
( ( 1 - S i )  SO 1 - 5 0  1-so 

( E  - E ' )  = qEI ~ 

Equation (20) gives the mean energy gained by an electron between collisions. The 
average energy lost per collision is [hw/(l + A)] tanh(hw/ZkT). Hence if we normalize 
to its ballisticvalue. the dead space is given by 

The field and temperature dependence of dead space are completely defined by 
equations (2), (20) and (21). 

3. Discussion 

We will demonstrate the use of this analysis by determining the normalized dead space 
insilicon. Theoptical phononenergyis takenas63 meVand the mean free path between 
collisions is assumed to be 7.5 nm. In low fields and at room temperature s is close to 1 
and the dead space tends to a value approximately 3/2 of the ballistic value showing 
that the electron travels relatively long distances between collisions. Only when the 
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temperature is reduced does equation (21) tend to 1 indicating ballistic or lucky electron 
transport. In high fieldss = 0.3 and the dead space tends to a value approximately twice 
the ballistic value. This implies that electrons make frequent collisions with optical 
phonons and effectively 'diffuse' to high energies, confirming the process described by 
Wolff [3]. Obviously the magnitude of the dead space decreases with increasing field 
because although collisions with phonons are more frequent the mean energy gained 
per unit distance is greatly increased. In application the magnitude of dead space will 
depend upon the threshold energy of the process under consideration and on the number 
of electrons reaching that energy. In the analysis we have presented the dead space is 
determined by those electrons with the highest probability of reaching the threshold 
energy. 

In this paper we have derived an analytic expression for the field and temperature 
dependenceof deadspaceinsemiconductors.The theoryshould beusefulinapplications 
where the hot-carrier distribution function is sensitive to dead space. 
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